sin kπ/4(k从1到n)的和为什么等于{cos[π/8]-cos[(n+1/2)π/4]}/2sin(π/8)?

wjl821118 1年前 已收到1个回答 举报

nfyr 花朵

共回答了20个问题采纳率:95% 举报

sin(nπ/4)=[2sin(nπ/4)sin(π/8)]/[2sin(π/8)],
然后对[2sin(nπ/4)sin(π/8)]用积化和差,
2sin(nπ/4)sin(π/8)=cos(nπ/4-π/8)-cos(nπ/4+π/8)=cos[(n-1)π/4+π/8]-cos(nπ/4+π/8)
所以sin(nπ/4)=[cos[(n-1)π/4+π/8]-cos(nπ/4+π/8)]/[2sin(π/8)],
然后∑sin kπ/4=[cosπ/8-cos(π/4+π/8)+cos(π/4+π/8)-cos(2*π/4+π/8)+.
+cos[(n-1)π/4+π/8]-cos(nπ/4+π/8)]/[2sin(π/8)]
={cos[π/8]-cos(nπ/4+π/8)]}/2sin(π/8)
={cos[π/8]-cos[(n+1/2)π/4]}/2sin(π/8)

1年前

1
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 16 q. 0.028 s. - webmaster@yulucn.com