证明schwarz 不等式

巫孩子气 1年前 已收到1个回答 举报

bcatttt 春芽

共回答了10个问题采纳率:80% 举报

推广形式为 (x1+y1+…)(x2+y2+…)…(xn+yn+…)≥[(Πx)^(1/n)+(Πy)^(1/n)+…]^n (*)
证明如下
记A1=x1+y1+…,A2=x2+y2+…,….
由平均值不等式得
(1/n)(x1/A1+x2/A2+…+xn/An)≥[x1*x2*…*xn/(A1*A2*…*An)]^(1/n)=[(Πx)/(A1*A2*…*An)]^(1/n)
(1/n)(y1/A1+y2/A2+…+yn/An)≥[y1*y2*…*yn/(A1*A2*…*An)]^(1/n)=[(Πy)/(A1*A2*…*An)]^(1/n)
……
上述m个不等式叠加得
1≥[(Πx)/(A1*A2*…*An)]^(1/n)+[(Πy)/(A1*A2*…*An)]^(1/n)+…
即(A1*A2*…*An)^(1/n)≥(Πx)^(1/n)+(Πy)^(1/n)+…
即 A1*A2*…*An≥[(Πx)^(1/n)+(Πy)^(1/n)+…]^n
即(x1+y1+…)(x2+y2+…)…(xn+yn+…)≥[(Πx)^(1/n)+(Πy)^(1/n)+…]^n
因此,不等式(*)成立.

1年前

9
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 17 q. 3.421 s. - webmaster@yulucn.com