已知:如图,抛物线y=ax2+bx+c经过原点(0,0)和A(1,-3)、B(-1,5)三点.

已知:如图,抛物线y=ax2+bx+c经过原点(0,0)和A(1,-3)、B(-1,5)三点.
(1)求抛物线的解析式.
(2)设抛物线与x轴的另一个交点为C.以OC为直径作⊙M,如果过抛物线上一点P作⊙M的切线PD,切点为D,且y轴的正半轴交于点为E,连接MD.已知点E的坐标为(0,m),求四边形EOMD的面积.(用含m的代数式表示)
(3)延长DM交⊙M于点N,连接ON、OD,当点P在(2)的条件下运动到什么位置时,能使得S四边形EOMD=S△DON?请求出此时点P的坐标.
笨笨鱼爱傻傻猫 1年前 已收到1个回答 举报

ttssyy 幼苗

共回答了19个问题采纳率:94.7% 举报

解题思路:(1)将O、A、B三点坐标代入抛物线的解析式中,即可求出待定系数的值,从而确定抛物线的解析式;
(2)连接EM;由于ED、EO都是⊙M的切线,根据切线长定理可得到ED=EO,根据SSS可证得△EDM≌△EOM,则它们的面积相等,因此四边形EOMD的面积其实是△EOM的面积的2倍,以OM为底,OE为长可求出△EOM的面积,即可得到四边形EOMD的面积表达式;
(3)△DON中,MN=DM,所以△DMO和△OMN等底同高,它们的面积相等;由此可证得△EOM与△OMD的面积相等,由于这两个三角形共用底边OM,则ED∥x轴,根据⊙M的半径即得到直线PD的解析式,联立抛物线的解析式即可求出P点的坐标.

(1)∵抛物线y=ax2+bx+c过O(0,0)、A(1,-3)、B(-1,5)三点,


c=0
a+b+c=−3
a−b+c=5,
解得

a=1
b=−4
c=0,
∴抛物线的解析式为y=x2-4x;

(2)抛物线y=x2-4x与轴的另一个交点坐标为C(4,0),
连接EM.
∴⊙M的半径是2,即OM=DM=2.
∵ED、EO都是⊙M的切线,
∴EO=ED.
∴△EOM≌△EDM.
∴S四边形EOMD=2S△OME=2×
1
2OM•OE=2m;

(3)设点D的坐标为(x0,y0),
∵S△DON=2S△DOM=2×
1
2OM×y0=2y0
当S四边形EOMD=S△DON时,即2m=2y0,m=y0
∵m=y0,ED∥x轴,
又∵ED为切线,
∴D点的坐标为(2,2);
∵P在直线ED上,故设P点的坐标为(x,2),
∵P在抛物线上,
∴2=x2-4x,
解得x=2±
6;
∴P(2+
6,2)或P(2-
6,2)为所求.

点评:
本题考点: 二次函数综合题.

考点点评: 此题是二次函数与圆的综合题,考查了二次函数解析式的确定、全等三角形的性质、切线长定理、函数图象交点及图形面积的求法等重要知识.此题难度较大,注意能够发现△EOM、△OMD的面积关系,从而得到直线PD与x轴的位置关系是解题的关键.

1年前

10
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 16 q. 0.039 s. - webmaster@yulucn.com