已知奇函数f(x)=ax3+bx2+cx(a≠0)在x=1处取得极大值2.

已知奇函数f(x)=ax3+bx2+cx(a≠0)在x=1处取得极大值2.
(1)求函数y=f(x)的解析式;
(2)对于区间[-2,2]上任意两个自变量的值x1,x2都有|f(x1)-f(x2)|≤c,求实数c的最小值.
hanqi5 1年前 已收到1个回答 举报

一马尘青 幼苗

共回答了13个问题采纳率:84.6% 举报

解题思路:(1)根据奇函数的性质f(-x)=f(x),已知条件函数f(x)=ax3+bx2+cx(a≠0)在x=1处取得极大值2可以推出f′(1)=0和f(1)=2,代入即可求得函数y=f(x)的解析式;
(2)根据题意对于区间[-2,2]上任意两个自变量的值x1,x2都有|f(x1)-f(x2)|≤c,将问题转化为)|f(x1)-f(x2)|≤|f(x)max-f(x)min|,求出f(x)的最大值和最小值即可;

(1)∵奇函数f(x)=ax3+bx2+cx(a≠0)在x=1处取得极大值2,奇函数f(-x)=-f(x),解得b=0,
可得f′(x)=3ax2+c
由题意得

b=0
f′(1)=0
f(1)=2解得,

a=−1
b=0
c=3,
∴f(x)=-x3+3x;
(2)|f(x1)-f(x2)|≤|f(x)max-f(x)min|=4,
根据(1)可得f(x)=-x3+3x;
求导得f′(x)=-3x2+3=-3(x2-1)令f′(x)=0,可得x=1或-1,
当f′(x)>0即-1<x<1,f(x)为增函数,
当f′(x)<0时即x>1或x<-1,f(x)为减函数,
f(x)在x=1处取极大值f(1)=2,在x=-1处取得极小值f(-1)=-,2;
f(-2)=2,f(2)=-2,
∴f(x)max=2,f(x)min=-2,
要使对于区间[-2,2]上任意两个自变量的值x1,x2都有|f(x1)-f(x2)|≤c,
∴|f(x1)-f(x2)|≤|f(x)max-f(x)min|=4,
故c的最小值为4;

点评:
本题考点: 利用导数求闭区间上函数的最值;函数在某点取得极值的条件.

考点点评: 此题主要考查利用导数研究函数的单调性,考查的知识点比较全面是一道中档题,解题的过程中用到了转化的思想,这类题是高考的热点问题;

1年前

6
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 17 q. 0.108 s. - webmaster@yulucn.com