勾股定理的证明方法 急 急 带上图

勾股定理的证明方法 急 急 带上图
求证勾股定理听说有300多种证法 我之要10中即可初中生可以理解的
提劲打靶 1年前 已收到1个回答 举报

wfnygaqq 幼苗

共回答了23个问题采纳率:91.3% 举报

勾股定理的证明【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即 , 整理得.【证法2】(邹元治证明)以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 . 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.∵ RtΔHAE ≌ RtΔEBF, ∴ ∠AHE = ∠BEF.∵ ∠AEH + ∠AHE = 90 ,∴ ∠AEH + ∠BEF = 90 .∴ ∠HEF = 180 ―90 = 90 .∴ 四边形EFGH是一个边长为c的正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE, ∴ ∠HGD = ∠EHA.∵ ∠HGD + ∠GHD = 90 ,∴ ∠EHA + ∠GHD = 90 .又∵ ∠GHE = 90 ,∴ ∠DHA = 90 + 90 = 180 .∴ ABCD是一个边长为a + b的正方形,它的面积等于 .∴.∴.【证法3】(赵爽证明)以a、b 为直角边(b>a), 以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于 . 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90 ,∴ ∠EAB + ∠HAD = 90 ,∴ ABCD是一个边长为c的正方形,它的面积等于c2.∵ EF = FG =GH =HE = b―a ,∠HEF = 90 .∴ EFGH是一个边长为b―a的正方形,它的面积等于 .∴.∴.【证法4】(1876年美国总统Garfield证明)以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于 . 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上. ∵ RtΔEAD ≌ RtΔCBE, ∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90 ,∴ ∠AED + ∠BEC = 90 . ∴ ∠DEC = 180 ―90 = 90 .∴ ΔDEC是一个等腰直角三角形,它的面积等于 .又∵ ∠DAE = 90 , ∠EBC = 90 ,∴ AD‖BC.∴ ABCD是一个直角梯形,它的面积等于 .∴.∴.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,∴ ∠EGF = ∠BED,∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180 ―90 = 90 .又∵ AB = BE = EG = GA = c,∴ ABEG是一个边长为c的正方形. ∴ ∠ABC + ∠CBE = 90 .∵ RtΔABC ≌ RtΔEBD,∴ ∠ABC = ∠EBD.∴ ∠EBD + ∠CBE = 90 . 即∠CBD= 90 .又∵ ∠BDE = 90 ,∠BCP = 90 ,BC = BD = a.∴ BDPC是一个边长为a的正方形.同理,HPFG是一个边长为b的正方形.设多边形GHCBE的面积为S,则,∴. 【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP‖BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90 ,QP‖BC,∴ ∠MPC = 90 ,∵ BM⊥PQ,∴ ∠BMP = 90 ,∴ BCPM是一个矩形,即∠MBC = 90 .∵ ∠QBM + ∠MBA = ∠QBA = 90 ,∠ABC + ∠MBA = ∠MBC = 90 ,∴ ∠QBM = ∠ABC,又∵ ∠BMP = 90 ,∠BCA = 90 ,BQ = BA = c,∴ RtΔBMQ ≌ RtΔBCA.同理可证RtΔQNF ≌ RtΔAEF.从而将问题转化为【证法4】(梅文鼎证明).【证法7】(欧几里得证明)做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结BF、CD. 过C作CL⊥DE,交AB于点M,交DE于点L. ∵ AF = AC,AB = AD,∠FAB = ∠GAD,∴ ΔFAB ≌ ΔGAD,∵ ΔFAB的面积等于 ,ΔGAD的面积等于矩形ADLM的面积的一半,∴ 矩形ADLM的面积 = .同理可证,矩形MLEB的面积 = .∵ 正方形ADEB的面积 = 矩形ADLM的面积 + 矩形MLEB的面积∴,即.【证法8】(利用相似三角形性质证明)如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D. 在ΔADC和ΔACB中,∵ ∠ADC = ∠ACB = 90 ,∠CAD = ∠BAC,∴ΔADC ∽ ΔACB.AD∶AC = AC ∶AB,即.同理可证,ΔCDB ∽ ΔACB,从而有.∴,即.【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 过A作AF⊥AC,AF交GT于F,AF交DT于R. 过B作BP⊥AF,垂足为P. 过D作DE与CB的延长线垂直,垂足为E,DE交AF于H.∵ ∠BAD = 90 ,∠PAC = 90 ,∴ ∠DAH = ∠BAC.又∵ ∠DHA = 90 ,∠BCA = 90 ,AD = AB = c,∴ RtΔDHA ≌ RtΔBCA.∴ DH = BC = a,AH = AC = b.由作法可知, PBCA 是一个矩形,所以 RtΔAPB ≌ RtΔBCA. 即PB = CA = b,AP= a,从而PH = b―a.∵ RtΔDGT ≌ RtΔBCA ,RtΔDHA ≌ RtΔBCA.∴ RtΔDGT ≌ RtΔDHA .∴ DH = DG = a,∠GDT = ∠HDA . 又∵ ∠DGT = 90 ,∠DHF = 90 ,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90 ,∴ DGFH是一个边长为a的正方形.∴ GF = FH = a . TF⊥AF,TF = GT―GF = b―a .∴ TFPB是一个直角梯形,上底TF=b―a,下底BP= b,高FP=a +(b―a).用数字表示面积的编号(如图),则以c为边长的正方形的面积为 ①∵=, ,∴=.②把②代入①,得 ==.∴. 【证法10】(李锐证明)设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使A、E、G三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90 ,∴ ∠TBH = ∠ABE.又∵ ∠BTH = ∠BEA = 90 ,BT = BE = b,∴ RtΔHBT ≌ RtΔABE.∴ HT = AE = a.∴ GH = GT―HT = b―a.又∵ ∠GHF + ∠BHT = 90 ,∠DBC + ∠BHT = ∠TBH + ∠BHT = 90 ,∴ ∠GHF = ∠DBC.∵ DB = EB―ED = b―a,∠HGF = ∠BDC = 90 ,∴ RtΔHGF ≌ RtΔBDC. 即.过Q作QM⊥AG,垂足是M. 由∠BAQ = ∠BEA = 90 ,可知 ∠ABE= ∠QAM,而AB = AQ = c,所以RtΔABE ≌ RtΔQAM . 又RtΔHBT ≌ RtΔABE. 所以RtΔHBT ≌ RtΔQAM . 即. 由RtΔABE ≌ RtΔQAM,又得QM = AE = a,∠AQM = ∠BAE. ∵ ∠AQM + ∠FQM = 90 ,∠BAE + ∠CAR = 90 ,∠AQM = ∠BAE,∴ ∠FQM = ∠CAR.又∵∠QMF = ∠ARC = 90 ,QM = AR = a,∴ RtΔQMF ≌ RtΔARC. 即 .∵, , ,又∵, , ,∴= = ,即.【证法11】(利用切割线定理证明)在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 如图,以B为圆心a为半径作圆,交AB及AB的延长线分别于D、E,则BD = BE = BC = a. 因为∠BCA = 90 ,点C在⊙B上,所以AC是⊙B 的切线. 由切割线定理,得 = = =,即,∴. 【证法12】(利用多列米定理证明)在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c(如图). 过点A作AD‖CB,过点B作BD‖CA,则ACBD为矩形,矩形ACBD内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有 ,∵ AB = DC = c,AD = BC = a,AC = BD = b,∴,即,∴. 【证法13】(作直角三角形的内切圆证明)在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 作RtΔABC的内切圆⊙O,切点分别为D、E、F(如图),设⊙O的半径为r.∵ AE = AF,BF = BD,CD = CE,∴== r + r = 2r,即,∴.∴,即,∵,∴,又∵====,∴,∴,∴,∴.【证法14】(利用反证法证明)如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D. 假设 ,即假设,则由 = = 可知,或者. 即 AD:AC≠AC:AB,或者 BD:BC≠BC:AB.在ΔADC和ΔACB中,∵ ∠A = ∠A,∴ 若 AD:AC≠AC:AB,则∠ADC≠∠ACB.在ΔCDB和ΔACB中,∵ ∠B = ∠B,∴ 若BD:BC≠BC:AB,则∠CDB≠∠ACB.又∵ ∠ACB = 90 ,∴ ∠ADC≠90 ,∠CDB≠90 .这与作法CD⊥AB矛盾. 所以, 的假设不能成立.∴. 【证法15】(辛卜松证明)设直角三角形两直角边的长分别为a、b,斜边的长为c. 作边长是a+b的正方形ABCD.把正方形ABCD划分成上方左图所示的几个部分,则正方形ABCD的面积为;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD的面积为= .∴,∴. 【证法16】(陈杰证明)设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做两个边长分别为a、b的正方形(b>a),把它们拼成如图所示形状,使E、H、M三点在一条直线上. 用数字表示面积的编号(如图).在EH = b上截取ED = a,连结DA、DC,则 AD = c.∵ EM = EH + HM = b + a , ED = a,∴ DM = EM―ED =―a = b.又∵ ∠CMD = 90 ,CM = a,∠AED = 90 , AE = b,∴ RtΔAED ≌ RtΔDMC.∴ ∠EAD = ∠MDC,DC = AD = c.∵ ∠ADE + ∠ADC+ ∠MDC =180 ,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90 ,∴ ∠ADC = 90 .∴ 作AB‖DC,CB‖DA,则ABCD是一个边长为c的正方形.∵ ∠BAF + ∠FAD = ∠DAE+ ∠FAD = 90 ,∴ ∠BAF=∠DAE.连结FB,在ΔABF和ΔADE中,∵ AB =AD = c,AE = AF = b,∠BAF=∠DAE,∴ ΔABF ≌ ΔADE.∴ ∠AFB = ∠AED = 90 ,BF = DE = a.∴ 点B、F、G、H在一条直线上.在RtΔABF和RtΔBCG中,∵ AB = BC = c,BF = CG = a,∴ RtΔABF ≌ RtΔBCG.∵,,, ,∴= = = ∴.

1年前

7
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 17 q. 0.368 s. - webmaster@yulucn.com