请阅读下列材料:问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,

请阅读下列材料:
问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及[PG/PC]的值.
小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:
(1)写出上面问题中线段PG与PC的位置关系及[PG/PC]的值;
(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明;
(3)若图1中∠ABC=∠BEF=2α(0°<α<90°),将菱形BEFG绕点B顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出[PG/PC]的值(用含α的式子表示).
luo_7661 1年前 已收到2个回答 举报

心黑手辣玩命赚 幼苗

共回答了12个问题采纳率:91.7% 举报

解题思路:(1)根据题意可知小聪的思路为,通过判定三角形DHP和PGF为全等三角形来得出证明三角形HCG为等腰三角形且P为底边中点的条件;
(2)思路同上,延长GP交AD于点H,连接CH,CG,本题中除了如(1)中证明△GFP≌△HDP(得到P是HG中点)外还需证明△HDC≌△GBC(得出三角形CHG是等腰三角形).
(3)∠ABC=∠BEF=2α(0°<α<90°),那么∠PCG=90°-α,由(1)可知:PG:PC=tan(90°-α).

(1)∵CD∥GF,∠PDH=∠PFG,∠DHP=∠PGF,DP=PF,
∴△DPH≌△FGP,
∴PH=PG,DH=GF,
∵CD=BC,GF=GB=DH,
∴CH=CG,
∴CP⊥HG,∠ABC=60°,
∴∠DCG=120°,
∴∠PCG=60°,
∴PG:PC=tan60°=
3,
∴线段PG与PC的位置关系是PG⊥PC,[PG/PC]=
3;
(2)猜想:(1)中的结论没有发生变化.
证明:如图2,延长GP交AD于点H,连接CH,
∵P是线段DF的中点,
∴FP=DP,
∵AD∥GF,
∴∠HDP=∠GFP,
∵∠GPF=∠HPD,
∴△GFP≌△HDP(ASA),
∴GP=HP,GF=HD,
∵四边形ABCD是菱形,
∴CD=CB,∠HDC=∠ABC=60°,
∵∠ABC=∠BEF=60°,菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,
∴∠GBF=60°,
∴∠HDC=∠GBF,
∵四边形BEFG是菱形,
∴GF=GB,
∴HD=GB,
∴△HDC≌△GBC,
∴CH=CG,∠HCD=∠GCB
∴PG⊥PC(到线段两端点距离相等的点在线段的垂直平分线上)
∵∠ABC=60°
∴∠DCB=∠HCD+∠HCB=120°
∵∠HCG=∠HCB+∠GCB
∴∠HCG=120°
∴∠GCP=60°
∴[PG/PC]=tan∠GCP=tan60°=
3;
(3)∵∠ABC=∠BEF=2α(0°<α<90°),
∴∠PCG=90°-α,
由(1)可知:PG:PC=tan(90°-α),
∴[PG/PC]=tan(90°-α).

点评:
本题考点: 菱形的性质;全等三角形的判定与性质;锐角三角函数的定义.

考点点评: 本题是一道探究性的几何综合题,主要考查菱形的性质,全等三角形的判定及三角函数的综合运用.

1年前

2

小连翘 幼苗

共回答了4个问题 举报

没图?

1年前

1
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 18 q. 0.145 s. - webmaster@yulucn.com