过椭圆3x²+4y²=48的左焦点引斜率为1的直线交椭圆于A、B两点,则|AB|等于多少

水满了 1年前 已收到1个回答 举报

solo-rainbow 幼苗

共回答了15个问题采纳率:100% 举报

3x²+4y²=48即x²/16+y²/12=1,a²=16,b²=12,c²=a²-b²=16-12=4,c=2
左焦点坐标为(-2,0),由点斜式得过椭圆3x²+4y²=48的左焦点引斜率为1的直线方程为
y=x+2,把其代入3x²+4y²=48,得,7x²+16x-32=0,设其二根为x1,x2,
判别式=16²+4*7*32=2*24²,
由弦长公式得|AB|=根号(1+1²)*|x1-x2|=(根号2)*24*(根号2)/7=48/7

1年前

9
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 17 q. 1.550 s. - webmaster@yulucn.com