(2008•天津)已知函数f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.

(2008•天津)已知函数f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.
(Ⅰ)当a=−
10
3
时,讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)仅在x=0处有极值,求a的取值范围;
(Ⅲ)若对于任意的a∈[-2,2],不等式f(x)≤1在[-1,1]上恒成立,求b的取值范围.
ava7h 1年前 已收到1个回答 举报

dlqdlq 幼苗

共回答了17个问题采纳率:88.2% 举报

解题思路:(1)将a的值代入后对函数f(x)进行求导,当导函数大于0时求原函数的单调增区间,当导函数小于0时求原函数的单调递减区间.
(2)根据函数f(x)仅在x=0处有极值说明f'(x)=0仅有x=0一个根得到答案.
(3)根据函数f(x)的单调性求出最大值,然后令最大值小于等于1恒成立求出b的范围.

(Ⅰ)f'(x)=4x3+3ax2+4x=x(4x2+3ax+4).
当a=−
10
3时,f'(x)=x(4x2-10x+4)=2x(2x-1)(x-2).
令f'(x)=0,解得x1=0,x2=
1
2,x3=2.
当x变化时,f'(x),f(x)的变化情况如下表:

所以f(x)在(0,
1
2),(2,+∞)内是增函数,在(-∞,0),(
1
2,2)内是减函数.
(Ⅱ)f'(x)=x(4x2+3ax+4),显然x=0不是方程4x2+3ax+4=0的根.
为使f(x)仅在x=0处有极值,必须4x2+3ax+4≥0成立,即有△=9a2-64≤0.
解些不等式,得−
8
3≤a≤
8
3.这时,f(0)=b是唯一极值.
因此满足条件的a的取值范围是[−
8
3,
8
3].
(Ⅲ)由条件a∈[-2,2],可知△=9a2-64<0,从而4x2+3ax+4>0恒成立.
当x<0时,f'(x)<0;当x>0时,f'(x)>0.
因此函数f(x)在[-1,1]上的最大值是f(1)与f(-1)两者中的较大者.
为使对任意的a∈[-2,2],不等式f(x)≤1在[-1,1]上恒成立,
当且仅当

f(1)≤1
f(−1)≤1,即

b≤−2−a
b≤−2+a,在a∈[-2,2]上恒成立.
所以b≤-4,因此满足条件的b的取值范围是(-∞,-4].

点评:
本题考点: 利用导数研究函数的单调性;函数恒成立问题;利用导数研究函数的极值;利用导数求闭区间上函数的最值.

考点点评: 本小题主要考查利用导数研究函数的单调性、函数的最大值、解不等式等基础知识,考查综合分析和解决问题的能力.

1年前

9
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 17 q. 0.137 s. - webmaster@yulucn.com