如图所示,长L=9m的传送带与水平方向的倾角为37°,在电动机的带动下以v=4m/s 的速率顺时针方向运行,在

如图所示,长L=9m的传送带与水平方向的倾角为37°,在电动机的带动下以v=4m/s 的速率顺时针方向运行,在
如图所示,长L=9m的传送带与水平方向的倾角为37°,在电动机的带动下以v=4m/s 的速率顺时针方向运行,在传送带的B端有一离传送带很近的挡板P可将传送带上的物块挡住,在传送带的A端无初速地放一质量m=1kg的物块,它与传送带间的动摩擦因数μ=0.5,物块与挡板的碰撞能量损失及碰撞时间不计.( g=10m/s2,)求:
(1)物块从第一次静止释放到与挡板P第一次碰撞后,物块上升到最高点时到挡板P的距离;
(2)物块最终的运动状态及达到该运动状态后电动机的输出功率.
471552169 1年前 已收到1个回答 举报

甘肃飞鱼 幼苗

共回答了21个问题采纳率:81% 举报

(1)物块从A点由静止释放,由牛顿第二定律得:
向下运动的加速度:ma1=mgsinθ-μmgcosθ,代入数据解得:a1=2m/s2
由速度位移公式可知,与P碰前的速度v1=
2a1L=
2×2×9=6m/s,
物块与挡板碰撞后,以v1的速率反弹,因v1>v,物块相对传送带向上滑,
由牛顿第二定律可知,物块向上做减速运动的加速度ma2=mgsinθ+μmgcosθ,代入数据解得:a2=10m/s2
物块速度减小到与传送带速度相等所需时间:t1=
v1?v
a2=[6?4/10]=0.2s,
物块向上的位移:x1=
v1+v
2t1=[6+4/2]×0.2=1m,
物块速度与传送带速度相等后,μ<tanθ,由牛顿第二定律可知,ma3=mgsinθ-μmgcosθ,
代入数据解得,物块向上做减速运动的加速度:a3=2m/s2
物块向上的位移:x2=
v2
2a3=
42
2×2=4m,离P点的距离:x1+x2=1+4=5m
(2)物块上升到传送带的最高点后,物块沿传送带向下加速运动,与挡板P第二次碰掸前的速度:v2=
2a1(x1+x2)=
2×2×(1+4)=
20m/s,
碰后因v2>v,物块先向上做加速度为a2的减速运动,再做加速度为a3的减速运动,以此类推经过多次碰撞后物块以v=4m/s的速率反弹,
故最终物块在P与离P 点4m的范围内不断做向上的加速度为2 m/s2的减速运动和向下做加速度为2 m/s2的加速运动,
物块的运动达到这一稳定状态后,物块对传送带有一与传送带运动方向相反的阻力Ff=μmgcosθ,
故电动机的输出功率:P=(μmgcosθ)v,代入数据解得:P=16W;
答:(1)物块从第一次静止释放到与挡板P第一次碰撞后,物块上升到最高点时到挡板P的距离为5m;
(2)物块最终的运动状态及达到该运动状态后电动机的输出功率为16W.

1年前

10
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 17 q. 2.879 s. - webmaster@yulucn.com