已知b,c∈R,f(x)=x2+bx+c,对任意α,β∈R,都有f(sinα)≥0,f(2+cosβ)≤0

已知b,c∈R,f(x)=x2+bx+c,对任意α,β∈R,都有f(sinα)≥0,f(2+cosβ)≤0
(1)求f(1)的值;
(2)证明:c≥3;
(3)设f(sinα)的最大值10,求f(x).
nn7505 1年前 已收到1个回答 举报

虫子很讨厌 幼苗

共回答了16个问题采纳率:93.8% 举报

解题思路:(1)由sinα,sinβ的有界性以及f(sinα)≥0,f(2+sinβ)≤0;可以求出f(1)的值;
(2)由二次函数f(x)的对称轴以及f(1)的值,可以证出c≥3;
(3)由题意,判定f(-1)是f(x)在[-1,1]的最大值;又由(1)知f(1)的值;由此求出b、c的值,即得f(x)的表达式.

(1)∵-1≤sinα≤1,1≤2+sinβ≤3,
且对任意α,β∈R都有f(sinα)≥0,f(2+sinβ)≤0;
∴对x∈[-1,1]时,f(x)≥0,对x∈[1,3]时,f(x)≤0;
∴f(1)=0.
(2)∵对x∈[-1,1]时,f(x)≥0,对x∈[1,3]时,f(x)≤0,
∴二次函数f(x)的对称轴满足:x=-[b/2]≥2,
∴b≤4;
由(1)知,f(1)=0,
∴1+b+c=0,
∴c=-b-1≥4-1=3.
(3)∵f(sinα)的最大值为10,
∴f(x)在[-1,1]的最大值为10;
又∵二次函数f(x)图象开口向上且对称轴:x=-[b/2]≥2,
∴f(x)在[-1,1]上单调递减,
∴f(-1)=10,
∴1-b+c=10①;
又由(1)知,f(1)=0,
∴1+b+c=0②;
联立①②,解得b=-5,c=4,
∴f(x)的表达式为f(x)=x2-5x+4.

点评:
本题考点: 函数与方程的综合运用;二次函数的性质.

考点点评: 本题结合三角函数的知识考查了二次函数的性质与应用问题,是综合性题目.

1年前

5
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 16 q. 1.619 s. - webmaster@yulucn.com