已知命题:①已知正项等比数列{an}中,不等式an+1+an-1≥2an(n≥2,n∈N*)一定成立;②若F(n)=(n

已知命题:
①已知正项等比数列{an}中,不等式an+1+an-1≥2an(n≥2,n∈N*)一定成立;
②若F(n)=(n+1)(n+2)(n+3)…(n+n)(n∈N*),则F(1)=2,F(2)=24;
③已知数列{an}中,an=n2+λn+1(λ∈R).若λ>-3,则恒有an+1>an(n∈N*);
④公差小于零的等差数列{an}的前n项和为Sn.若S20=S40,则S30为数列{Sn}的最大项;以上四个命题正确的是______(填入相应序号)
x_nabfe7pg1_6f0 1年前 已收到1个回答 举报

tt200705 种子

共回答了14个问题采纳率:85.7% 举报

解题思路:由正项等比数列{an}中,an+1,an,an-1(n≥2,n∈N*)成等差数列,知an+1+an-1=2an(n≥2,n∈N*);由F(n)=(n+1)(n+2)(n+3)…(n+n)(n∈N*),知F(1)=1+1=2,F(2)=(2+1)(2+2)=12≠24;由λ>-3知an+1-an=[(n+1)2+λ(n+1)+1]-(n2+λn+1)=2n+1+λ>0;由公差小于零的等差数列{an}的前n项和为Sn.S20=S40,知20a1+
20×19
2]d=40a1+
40×39
2
d
a1=−
59
2
d
,所以Sn=−
59d
2
n+
n(n−1)
2
d
=
d
2
(n−30)2
-450d,由d<0,知S30为数列{Sn}的最大项.

∵正项等比数列{an}中,an+1,an,an-1(n≥2,n∈N*)成等差数列,
∴an+1+an-1=2an(n≥2,n∈N*),
∴不等式an+1+an-1≥2an(n≥2,n∈N*)一定成立.
故①正确;
∵F(n)=(n+1)(n+2)(n+3)…(n+n)(n∈N*),
∴F(1)=1+1=2,
F(2)=(2+1)(2+2)=12≠24,
故②不正确;
∵λ>-3
∴an+1-an=[(n+1)2+λ(n+1)+1]-(n2+λn+1)=2n+1+λ>0,
∴若λ>-3,则恒有an+1>an(n∈N*),
故③正确;
公差小于零的等差数列{an}的前n项和为Sn
若S20=S40
则20a1+
20×19
2d=40a1+
40×39
2d,
∴a1=−
59
2d,
Sn=−
59d
2n+
n(n−1)
2d
=[d/2n2−30d
=
d
2(n−30)2-450d,
∵d<0,
∴S30为数列{Sn}的最大项.
故④正确.
故答案为:①③④.

点评:
本题考点: 等比数列的性质;等差数列的性质.

考点点评: 本题考查数列的性质的应用,是基础题.解题时要认真审题,熟练掌握等差数列和等比数列的性质.

1年前

8
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 16 q. 0.048 s. - webmaster@yulucn.com