设函数fn(x)=xn+bx+c(n∈N+,b,c∈R)

设函数fn(x)=xn+bx+c(n∈N+,b,c∈R)
(Ⅰ)当b>0时,判断函数fn(x)在(0,+∞)上的单调性;
(Ⅱ)设n≥2,b=1,c=-1,证明:fn(x)在区间(
1
2
,1)
内存在唯一的零点;
(Ⅲ)设n=2,若对任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤4,求b的取值范围.
你会猜错的 1年前 已收到1个回答 举报

woolman 幼苗

共回答了17个问题采纳率:88.2% 举报

解题思路:(Ⅰ)求导数,验证fn′(x)>0,即可得到结论;
(Ⅱ)将n>2,b=1,c=-1代入可得fn(x)=xn+x-1,结合指数函数的性质可得fn′(x)=nxn-1+1>0在([1/2],1)上恒成立,进而判断出函数在区间上单调,分析区间两端点的函数值符号关系,进而根据零点存在定理,可得答案;
(Ⅲ)将n=2,根据|f2(x1)-f2(x2)|≤4,分类讨论不同情况下b的取值范围,综合讨论结果,可得b的取值范围.

(Ⅰ)∵fn(x)=xn+bx+c,
∴fn′(x)=nxn−1+b
∵b>0,x>0,n∈N+
∴fn′(x)>0
∴函数fn(x)在(0,+∞)上的单调递增;
(Ⅱ)证明:由n>2,b=1,c=-1,得fn(x)=xn+x-1
∴fn′(x)=nxn-1+1>0在(
1
2,1)上恒成立,
∴fn(x)=xn+x-1在(
1
2,1)单调递增,
∵fn(1)=1>0,fn([1/2])=(
1
2)n−
1
2<0,
∴fn(x)在区间(
1
2,1)内存在唯一的零点;
(Ⅲ)当n=2时,f2(x)=x2+bx+c
①当b≥2或b≤-2时,即-[b/2]≤-1或-[b/2]≥1,此时只需满足|f2(1)-f2(-1)|=|2b|≤4
∴-2≤b≤2,即b=±2;
②当0≤b<2时,即-1<-[b/2]≤0,此时只需满足f2(1)-f2(-[b/2])≤4,即b2+4b-12≤0
解得:-6≤b≤2,即b∈[0,2)
③当-2<b<0时,即0<-[b/2]<1,此时只需满足f2(-1)-f2(-[b/2])≤4,即b2-4b-12≤0
解得:-2≤b≤6,即b∈(-2,0)
综上所述:b∈[-2,2].

点评:
本题考点: 利用导数研究函数的单调性;函数的零点;绝对值不等式的解法.

考点点评: 本题考查零点存在定理,导数法判断函数的单调性,待定系数法求范围,考查分类讨论的数学思想,属于中档题.

1年前

9
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 17 q. 0.132 s. - webmaster@yulucn.com