如图,在Rt△ACB=90°,半径为1的圆A与边AB相交于点D与边AC相交于点E,连接DE并延长,与线段BC的延长线交于

如图,在Rt△ACB=90°,半径为1的圆A与边AB相交于点D与边AC相交于点E,连接DE并延长,与线段BC的延长线交于点P.
(1)当∠B=30°时,连接AP,若△AEP与△BDP相似,求CE的长;
(2)若CE=2,BD=BC,求∠BPD的正切值;
(3)若tan∠BPD=1/3,设CE=x,△ABC的周长为y,求y关于x的函数关系式.
箫沅 1年前 已收到4个回答 举报

baobeichuang 幼苗

共回答了16个问题采纳率:93.8% 举报

∵ △AEP与△BDP相似
∴ AE :BD = EP :DP ------------------------------------------ ①
过点E 作AB的平行线,交BC 于点F
∵ EF ‖ AB
∴ EF :BD = EP :DP ------------------------------------------ ②
由 ① ② 知:AE :BD = EF :BD
∴ EF = AE = 1
∵ EF ‖ AB
∴ ∠EFC = ∠B = 30°
∴ 在Rt△EFC 中
CE = EF × sin∠EFC
= 1 × sin30°
= 1/2 (本问解法不一)
(2)
设BD = BC = a,
在 Rt△ABC 中,
AB = (a+1),BC = a,AC = 3
由勾股定理得:
AB平方 = BC平方 + AC平方
即:(a+1)平方 = a平方 + 3的平方
∴ a平方 + 2a + 1 = a平方 + 9
∴ a = 4
过点C作AB的平行线,交EP于点M
∵ CM ‖ AB
∴ △ECM ∽ △EAD
∴ EC :EA = CM :AD
即:2 :1 = CM :1
∴ CM = 2
又 ∵ CM ‖ BD 且 BD = 4
∴ CM 是 △PDB 的中位线
∴ PC = BC = 4
在Rt△PEC 中
tan∠BPD = EC / PC
= 2 / 4
= 1 / 2
(3)
∵ tan∠BPD = EC / PC = 1/3,EC = x ,
∴ PC = 3x
过点C作AB的平行线,交EP于点N
则有 CN :AD = CE :AE
即:CN :1 = x :1
∴ CN = x
∵ CN ‖ BD
∴ CN :BD = PC :PB
即 x :BD = 3x :(3x + BC)
两边同除以 x ,得:
1 :BD = 3 :(3x + BC)
∴ 3 BD = 3x + BC
∴ BD -- x = BC / 3 ------------------------------------------------- ③
在Rt△ABC 中,
AB = (BD+1),AC = (x + 1)
由勾股定理得:
AB平方 -- AC平方 = BC平方
即:(BD+1)平方 -- (x + 1)平方 = BC平方
∴[(BD+1)+ (x+1)] × [ (BD+1)-- (x+1) ] = BC平方
∴(BD + x + 2)×(BD -- x) = BC平方 ---------------------------------- ④
把 ③ 代入 ④,得:
(BD + x + 2)× (BC / 3) = BC平方
两边同除以 BC ,得:
BD + x + 2 = 3 BC ------------------------------------------ ⑤
⑤ -- ③ ,得:
2 x + 2 = 8 BC / 3
∴ BC = 3(x+1)/ 4 把该式代入③,得:
BD = x + BC / 3
= x + (x+1)/ 4
∴ y = BD + BC + CE + AE + AD
= x + (x+1)/ 4 + 3(x+1)/ 4 + x + 2
= x + (x+1) + x + 2
= 3x + 3

1年前

10

ansonchan846 幼苗

共回答了4个问题 举报

(1)△ACB为RT三角形,∠B=30°,则∠BAC=60°,又同一个圆中AD=AE,则△ADE为等边三角形,则∠ADP=60°,∠BDP=120°,则可得△BDP为等腰三角形,∠DBP=30°,又△AEP与△BDP相似,可得EP=1,sin30=CE/EP,解得:CE=0.5
(2)△ABC与△CEP相似,则有tan∠BPD=tan∠BAC,又BD=BC,EC=2, 得AC=3,AB=B...

1年前

2

LJ19820701 幼苗

共回答了1个问题 举报

fd

1年前

0

欣悦98 幼苗

共回答了9个问题 举报

学反正切了么

1年前

0
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 20 q. 1.420 s. - webmaster@yulucn.com