已知抛物线y=a(x-t-1)²+t²(a,t是常数,都不等于0)的顶点是A,抛物线y=x²

已知抛物线y=a(x-t-1)²+t²(a,t是常数,都不等于0)的顶点是A,抛物线y=x²-2x+1的顶点是B,抛物线y=a(x-t-1)²+t²与x轴的两个交点和它的顶点A能否构成直角三角形?若能,求出t的值,若不能,请说出理由.
请说出简要过程,不要直接的答案
蛤蟆蹬腿 1年前 已收到1个回答 举报

staqnet8888 幼苗

共回答了17个问题采纳率:88.2% 举报

由y=x^2-2x+1=(x-1)^2,得顶点B(1,0).
∵抛物线y=a(x-t-1)^2+t^2经过B(1,0),∴有等式:
(a+1)t^2=0,已知t≠0,故必有a+1=0,即a=-1.
将a=-1代入原方程得:
y=-(x-t-1)^2+t^2=-[x-(t+1)]^2+t^2
=-[x^2-2(t+1)x+(t+1)^2]+t^2
=-x^2+2(t+1)x-(t+1)^2+t^2
=-x^2+2(t+1)x-2t-1
这是一条开口朝下的抛物线,由于其判别式:
△=4(t+1)^2+4(-2t-1)
=4(t^2+2t+1)-8t-4
=4t^2>0
对任何t≠0都成立,故在t≠0的条件下,抛物线与X轴总有两个交点.
其顶点A的坐标为(t+1,t^2).
令y=-x^2+2(t+1)x-2t-1
=-[x^2-2(t+1)x+2t+1]
=-[x-(2t+1)](x-1)=0
得x1=1,x2=2t+1,
故可设抛物线与X轴的交点为ME(2t+1,0) F(1,0)
而A(t+1,t2)由对称性有AF=AE
∴只能是∠FAE=90°,AF^2=AD^2+DF^2.
而FD=OD-OF=t+1-1=t,AD=t^2,
∴AF^2=t^2+t^2=AE^2,
FE=OE-OF=2t+1-1=2t.
令EF^2=AF^2+AE^2,则有(2t)^2=2(t^2+t^2),4t^2=2t^4+2t^2,
∵t≠0,
∴t^2-1=0,
∴t=±1.
情况二:E(1,0),F(2t+1,0)
用分析法若△FAE为直角三角形,由抛物线对称性有AF=AE即△AFE为等腰直角三角形.
且D为FE中点,∵A(t+1,t2),
∴AD=t^2,OD=t+1,
∴AD=DE,∴t^2=OE-OD=1-(t+1),
t^2=-t,∴t1=0(不合题意,舍去),t2=-1.
故这条抛物线与x轴两交点和它们的顶点A能够成直角三角形,这时t=±1.
综上t=±1

1年前

5
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 17 q. 0.051 s. - webmaster@yulucn.com