动圆c与定圆c1:x^2+(y-4)^2=64内切,与定圆C2:x^2+(y+4)^2=4外切,求c的轨迹方程[在线等,

动圆c与定圆c1:x^2+(y-4)^2=64内切,与定圆C2:x^2+(y+4)^2=4外切,求c的轨迹方程[在线等,急,谢了.
求的C的轨迹是圆心点C的轨迹,不是圆方程
zhb4455 1年前 已收到2个回答 举报

habor81 幼苗

共回答了26个问题采纳率:88.5% 举报

此题很明显点C的轨迹是椭圆
圆c1:x²+(y-4)²=64,圆心(0,4),半径为8
圆c2:x²+(y+4)²=4,圆心(0,-4)半径为2
圆心c设为(x,y)半径设为r
c到定点(0,-4)和(0,4)的距离之和=8-r+2+r=10
符合椭圆定义
焦点(0,4)(0,4)
c=4,a=10/2=5,b=3
所以圆心c的轨迹y²/25+x²/9=1

1年前

2

知oo恩 幼苗

共回答了95个问题 举报

设c(x,y),圆c半径为r (r>0)
由于动圆c与定圆c1:x^2+(y-4)^2=64内切
则有:c(x,y)与c1(0,4)距离为|r-8|
即:(x-0)^2+(y-4)^2=(r-8)^2 ---(1)
又因为:c定圆c2:x^2+(y+4)^2=4外切
则有:c(x,y)与c2(0,-4)距离为r+2
即:(x-0)^2+(y+4)^2...

1年前

0
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 17 q. 0.032 s. - webmaster@yulucn.com